33 research outputs found

    Adenovirus 36 DNA in Adipose Tissue of Patient with Unusual Visceral Obesity

    Get PDF
    Massive adipose tissue depositions in the abdomen and thorax sufficient to interfere with respiration developed in a patient with multiple medical problems. Biopsy of adipose tissue identified human adenovirus 36 (Adv 36) DNA. Adv 36 causes adipogenesis in animals and humans. Development of massive lipomatosis may be caused by Adv 36

    In Vivo Imaging of Transplanted Islets with ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 by Targeting GLP-1 Receptor

    Get PDF
    Glucagon-like peptide 1 receptor (GLP-1R) is highly expressed in pancreatic islets, especially on β-cells. Therefore, a properly labeled ligand that binds to GLP-1R could be used for in vivo pancreatic islet imaging. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), a more stable agonist of GLP-1 such as Exendin-4 is a preferred imaging agent. In this study, DO3A-VS-Cys^(40)-Exendin-4 was prepared through the conjugation of DO3A-VS with Cys^(40)-Exendin-4. The in vitro binding affinity of DO3A-VS-Cys^(40)-Exendin-4 was evaluated in INS-1 cells, which overexpress GLP-1R. After ^(64)Cu labeling, biodistribution studies and microPET imaging of ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 were performed on both subcutaneous INS-1 tumors and islet transplantation models. The subcutaneous INS-1 tumor was clearly visualized with microPET imaging after the injection of ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4. GLP-1R positive organs, such as pancreas and lung, showed high uptake. Tumor uptake was saturable, reduced dramatically by a 20-fold excess of unlabeled Exendin-4. In the intraportal islet transplantation models, ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 demonstrated almost two times higher uptake compared with normal mice. ^(64)Cu-DO3A-VS-Cys^(40)-Exendin-4 demonstrated persistent and specific uptake in the mouse pancreas, the subcutaneous insulinoma mouse model, and the intraportal human islet transplantation mouse model. This novel PET probe may be suitable for in vivo pancreatic islets imaging in the human

    The Demise of Islet Allotransplantation in the US: A Call for an Urgent Regulatory Update The ISLETS FOR US Collaborative

    Get PDF
    Islet allotransplantation in the United States (US) is facing an imminent demise. Despite nearly three decades of progress in the field, an archaic regulatory framework has stymied US clinical practice. Current regulations do not reflect the state-of-the-art in clinical or technical practices. In the US, islets are considered biologic drugs and more than minimally manipulated human cell and tissue products (HCT/Ps). Across the world, human islets are appropriately defined as minimally manipulated tissue which has led to islet transplantation becoming a standard-of-care procedure for patients with type 1 diabetes mellitus and problematic hypoglycemia. As a result of the outdated US regulations, only eleven patients underwent allo-ITx in the US between 2011-2016 and all in the setting of a clinical trial. Herein, we describe the current regulations pertaining to islet transplantation in the United States. We explore the progress which has been made in the field and demonstrate why the regulatory framework must be updated to both, better reflect our current clinical practice and to deal with upcoming challenges. We propose specific updates to current regulations which are required for the renaissance of ethical, safe, effective, and affordable allo-ITx in the United States

    Insulin Gene Expression Is Regulated by DNA Methylation

    Get PDF
    BACKGROUND:Insulin is a critical component of metabolic control, and as such, insulin gene expression has been the focus of extensive study. DNA sequences that regulate transcription of the insulin gene and the majority of regulatory factors have already been identified. However, only recently have other components of insulin gene expression been investigated, and in this study we examine the role of DNA methylation in the regulation of mouse and human insulin gene expression. METHODOLOGY/PRINCIPAL FINDINGS:Genomic DNA samples from several tissues were bisulfite-treated and sequenced which revealed that cytosine-guanosine dinucleotide (CpG) sites in both the mouse Ins2 and human INS promoters are uniquely demethylated in insulin-producing pancreatic beta cells. Methylation of these CpG sites suppressed insulin promoter-driven reporter gene activity by almost 90% and specific methylation of the CpG site in the cAMP responsive element (CRE) in the promoter alone suppressed insulin promoter activity by 50%. Methylation did not directly inhibit factor binding to the CRE in vitro, but inhibited ATF2 and CREB binding in vivo and conversely increased the binding of methyl CpG binding protein 2 (MeCP2). Examination of the Ins2 gene in mouse embryonic stem cell cultures revealed that it is fully methylated and becomes demethylated as the cells differentiate into insulin-expressing cells in vitro. CONCLUSIONS/SIGNIFICANCE:Our findings suggest that insulin promoter CpG demethylation may play a crucial role in beta cell maturation and tissue-specific insulin gene expression

    The demise of islet allotransplantation in the United States: A call for an urgent regulatory update

    Get PDF
    Islet allotransplantation in the United States (US) is facing an imminent demise. Despite nearly three decades of progress in the field, an archaic regulatory framework has stymied US clinical practice. Current regulations do not reflect the state-of-the-art in clinical or technical practices. In the US, islets are considered biologic drugs and “more than minimally manipulated” human cell and tissue products (HCT/Ps). In contrast, across the world, human islets are appropriately defined as “minimally manipulated tissue” and not regulated as a drug, which has led to islet allotransplantation (allo-ITx) becoming a standard-of-care procedure for selected patients with type 1 diabetes mellitus. This regulatory distinction impedes patient access to islets for transplantation in the US. As a result only 11 patients underwent allo-ITx in the US between 2016 and 2019, and all as investigational procedures in the settings of a clinical trials. Herein, we describe the current regulations pertaining to islet transplantation in the United States. We explore the progress which has been made in the field and demonstrate why the regulatory framework must be updated to both better reflect our current clinical practice and to deal with upcoming challenges. We propose specific updates to current regulations which are required for the renaissance of ethical, safe, effective, and affordable allo-ITx in the United States

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    MEMS oxygen transport device for islet transplantation in the subcutaneous site

    No full text
    This paper presents a new MEMS approach of maintaining islet oxygenation for subcutaneous islet transplantation therapy of type 1 diabetes by engineering a MEMS oxygen transport device. A device is designed and fabricated. Bench-top testing and computational modeling of the device have demonstrated that it would provide sufficient oxygen to prevent hypoxia-induced islet death and maintain the functional metabolic activity of glucose-simulated insulin secretion for islets transplanted subcutaneously

    The Effect of Insulin Feedback on Closed Loop Glucose Control

    No full text
    Closed-loop insulin delivery in individuals with type 1 diabetes improves nighttime glucose control, but the meal response needs to be improved

    Gene expression signature predicts human islet integrity and transplant functionality in diabetic mice.

    No full text
    There is growing evidence that transplantation of cadaveric human islets is an effective therapy for type 1 diabetes. However, gauging the suitability of islet samples for clinical use remains a challenge. We hypothesized that islet quality is reflected in the expression of specific genes. Therefore, gene expression in 59 human islet preparations was analyzed and correlated with diabetes reversal after transplantation in diabetic mice. Analysis yielded 262 differentially expressed probesets, which together predict islet quality with 83% accuracy. Pathway analysis revealed that failing islet preparations activated inflammatory pathways, while functional islets showed increased regeneration pathway gene expression. Gene expression associated with apoptosis and oxygen consumption showed little overlap with each other or with the 262 probeset classifier, indicating that the three tests are measuring different aspects of islet cell biology. A subset of 36 probesets surpassed the predictive accuracy of the entire set for reversal of diabetes, and was further reduced by logistic regression to sets of 14 and 5 without losing accuracy. These genes were further validated with an independent cohort of 16 samples. We believe this limited number of gene classifiers in combination with other tests may provide complementary verification of islet quality prior to their clinical use
    corecore